The presence of jasmonate-inducible lectin genes in some but not all Nicotiana species explains a marked intragenus difference in plant responses to hormone treatment.
نویسندگان
چکیده
Tobacco (Nicotiana tabacum L. cv Samsun NN) leaves accumulate a cytoplasmic/nuclear lectin, called Nictaba, in response to methyl jasmonate. To check whether, and if so to what extent, the specific induction of this lectin applies to related species, a collection of 19 Nicotiana species--covering 12 Nicotiana sections and eight Nicotiana tabacum cultivars--was screened for their capability to synthesize the jasmonate-inducible lectin. Protein analyses by agglutination assays and western blot confirmed that only nine out of the 19 species examined synthesize lectin after jasmonate treatment. Remarkably, all allotetraploid cultivars of the N. tabacum L. species tested express the lectin after jasmonate treatment. PCR analyses demonstrated that all responsive species possess one or more lectin genes, whereas no lectin gene(s) could be traced in the non-responding species. The number of introns present in the lectin genes varies between zero and two. Four tobacco species/cultivars contain both intronless Nictaba genes as well as lectin genes with introns. These findings provide the first firm evidence for a striking intragenus difference with respect to the activation of a well-defined jasmonate-inducible gene that can be correlated with the presence/absence of orthologous genes in the genomes of closely related species from a single plant genus. In addition, the differential response of closely related tobacco species illustrates that in the field of plant hormone research, care must be taken when extrapolating results obtained with a particular model system to other--even taxonomically closely related--species.
منابع مشابه
Consistency of Nicotiana attenuata's herbivore- and jasmonate-induced transcriptional responses in the allotetraploid species Nicotiana quadrivalvis and Nicotiana clevelandii.
We examined the consistency of the native diploid Nicotiana attenuata (Na)'s herbivore-induced transcriptional changes in the two allotetraploid natives, Nicotiana clevelandii (Nc) and Nicotiana quadrivalvis (Nq), which are thought to be derived from hybridizations with an ancestral Na. An analysis of nuclear-encoded chloroplast-expressed Gln synthetase gene (ncpGS) sequences found strong simil...
متن کاملExpression Pattern of pmt, erf1 and jap1 Genes in Nicotiana benthamiana and Atropa belladonna Plants under UV Radiation, Wounding and Methyl Jasmonate Treatments
The Solanaceae plants produce a variety of interesting biologically active products including the steroid alkaloids solanidine, nicotine and tropane alkaloids. Putrescine N-methyltransferase (PMT) is an enzyme that catalyses s-adenosylmethionine-dependent methylation of putrescine in one of the primary steps of nicotine and tropane alkaloids biosynthesis pathway. Two tobacco members of the AP2/...
متن کاملThe jasmonate-induced expression of the Nicotiana tabacum leaf lectin.
Previous experiments with tobacco (Nicotiana tabacum L. cv Samsun NN) plants revealed that jasmonic acid methyl ester (JAME) induces the expression of a cytoplasmic/nuclear lectin in leaf cells and provided the first evidence that jasmonates affect the expression of carbohydrate-binding proteins in plant cells. To corroborate the induced accumulation of relatively large amounts of a cytoplasmic...
متن کاملبهبود رشد گیاهچۀ توتون (.Nicotiana tabacum L) در شرایط تنش خشکی تحت تیمار متیل جاسمونات
Application of some chemical components including plant hormones such as methyl jasmonate causes resi-stance to increase in environmental stresses. In this study, the effect of metyl jasmonate in different concentrations (10, 20 and 30 uM) on the elevation of the plant resistance was investigated in drouht stress. Tobacco seedlings were studied under drought stress caused by polyethylene glycol...
متن کاملInterplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves.
Inducible defensive responses in plants are known to be activated locally and systemically by signaling molecules that are produced at sites of pathogen or insect attacks, but only one chemical signal, ethylene, is known to travel through the atmosphere to activate plant defensive genes. Methyl jasmonate, a common plant secondary compound, when applied to surfaces of tomato plants, induces the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 57 12 شماره
صفحات -
تاریخ انتشار 2006